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Abstract

We present a novel probabilistic model for recognizing actions by identifying and
extracting information from discriminative regions in videos. The model is trained in a
weakly-supervised manner: training videos are annotated only with training label with-
out any action location information within the video. Additionally, we eliminate the need
for any pre-processing measures to help shortlist candidate action locations. Our local-
ization experiments on UCF Sports dataset show that the discriminative regions produced
by this weakly supervised system are comparable in quality to action locations produced
by systems that require training on datasets with fully annotated location information.
Furthermore, our classification experiments on UCF Sports and two other major action
recognition benchmark datasets, HMDB and UCF101, show that our recognition system
significantly outperforms the baseline models and is comparable to the state-of-the-art.

1 Introduction
Action recognition research has seen the recent introduction of both large new datasets [13,
16] and a number of recognition algorithms, such as [17, 27, 28, 30, 35]. With several
exceptions, research has been dominated by systems focused on whole-clip classification
where the goal is to apply a single action label to the entire clip.

The drawback to focusing on whole-clip classification is that this results in systems that
can discriminate between action label, but are unable to identify the location of the actor
in clip. This limits the usefulness of the system to cases where it is sufficient to just label
the video, without actually locating the action. While whole-clip classification has obvious
applications in search and retrieval, the added capability to locate the actor increases the
range of possible applications of the system.

Recent work [17, 27, 28, 30, 35] has focused on training systems to both recognize the
action and localize the actor. However these systems either require hand-annotated ground
truth action locations during training or rely on a separate pre-processing step, often a human
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or saliency detector, to limit the scope of possible candidate regions. Hand-annotated action
location data limits a system to training from small datasets for which ground-truth informa-
tion is available, such as UCF Sports, and cannot be extended to much larger datasets like
HMDB and UCF101. On the other hand, using a pre-processing step makes the performance
of the system highly dependent on the pre-processing detector, which is often not trained on
the same data or tasks as the recognition system.

In this paper, we present an action recognition system that automatically locates discrim-
inative regions within a video and then uses information from these regions to classify the
action being performed. The system is trained in a weakly supervised manner where the
training data is annotated with only the action label i.e. no annotation of discriminative re-
gions is provided. While the focus of our approach is to find the most discriminative regions
for action classification and not specifically the location of the actor in the video, our exper-
iments on UCF Sports show that this method selects the actor location as the discriminative
region with an accuracy comparable to systems trained explicitly for action localization on
manually annotated data.

Furthermore, independence of the system from requiring hand-annotated data or any
pre-processing steps allows us to easily extend it to much larger datasets. We show that
our weakly-supervised model performs better than or comparable to the state-of-the-art on
large-scale action recognition datasets, such as HMDB and UCF101.

This paper is structured as follows. Section 2 provides an overview of the previous work
in action recognition related to our paper. Section 3 explains our proposed model and Section
4 provides details for learning our model. We show our experimental results in Section 5 and
conclude our paper in Section 6.

2 Related Work
A large amount of literature on the problem of recognizing actions in videos has developed
over the past decade. Weinland et al. [37] and Poppe [26] provide good overviews of the
various action recognition methods and datasets. Wang et al. [34] shows comparisons of
different methods on a variety of available well-known complex datasets.

Visual word representations of actions in videos have proven to be remarkably powerful
and robust [5, 19, 24, 29]. Using these visual codebooks, some have suggested codebook
refinement techniques for improved recognition results [2, 21] while others employ higher-
order relations between visual words [15, 20, 22]. In [35], Wang et al. introduce a video
representation based on dense trajectories and motion boundary histograms (MBH) which
achieved state-of-the-art on a variety of action classification datasets. Wang and Schmid [33]
improve the performance of the dense trajectories by finding a homography between frames
to estimate the camera motion. Jain et al. [10] decompose visual motion into dominant and
residual motions both for extracting trajectories and computing descriptors. Jain et al. [9]
propose a new representation for videos based on mid-level discriminative spatio-temporal
patches.

As discussed in the introduction, recent action recognition work has examined localiza-
tion. Studies have the benefit of action localization in [14, 25] by utilizing person-location
information or action detection prior to the task of recognition. Lan et al. [17] propose a
figure-centric representation for action localization and recognition by treating person loca-
tion as a latent variable and inferring it while simultaneously recognizing the action. Yao et
al. [38] classify and localize human actions in videos using a Hough transform voting frame-
work. Amer et al. [1] formulate a generative chain model of group activities to localize and
recognize group activities. Yuan et al. [39] propose a discriminative pattern matching tech-
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Figure 1: This diagram illustrates our approach for recognizing actions. The video is
searched using a set of localizers to find the most discriminative regions. Video histograms
are computed using the features from the discriminative regions and converted to nonlinear
high-dimensional features. Final features are then fed into a two-layer feed forward neural
network for classification.

nique to locate the action in the 3D video space using a branch-and-bound search mechanism.
Boyraz et al. [3] propose a technique that transforms the 3D action localization problem into
a series of 2D detection tasks. Lu et al. [23] propose a generative probabilistic model for con-
current action tracking and recognition. Ikizler et al. [8] employ a “tracking-by-detection”
method in association with Felzenszwalb’s human detector [6] for action detection. Raptis
et al. [27] use trajectory clusters as salient spatio-temporal structures for parts of an action.
These parts are then represented using a graphical model that incorporates individual as well
as pairwise constraints. Cao et al. [4] propose to use an adaptive cross-dataset action detec-
tion approach by exploring the spatio-temporal coherence of actions.

These systems are similar in that they require access to manually annotated localization
in the training data. Shapalova et al. [30] present a weakly supervised method to localize
action discriminative regions in video. However, our approach is superior in that not only do
we eliminate any pre-processing but we also perform better than their results on UCF Sports
dataset. We will show how our approach looks for most discriminative regions automatically
and that these discriminative regions tend to correspond to the action of interest.

3 Model Implementation
Figure 1 shows our proposed weakly-supervised framework for localizing discriminative
regions and recognizing actions. The goal of our system is to extract most discriminative sub-
regions within a video sequence and then aggregate them for the final action classification.

Given a video sequence, the classification system uses a set of localizers to find the most
discriminative regions in the video necessary to classify the action. Each of these regions
is represented via a visual words histogram. These histograms are then aggregated across
frames to construct a video level histogram for each localizer. In order to incorporate non-
linearity into our model, we use Kernel Map technique [31] to transform the histograms to a
high-dimensional feature space, where linear dot product approximates Histogram Intersec-
tion Kernel (HIK). These high-dimensional features are used as inputs to a two-layer feed
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Figure 2: First, we compute descriptor frames by extracting local features at densely sam-
pled space-time locations and assigning them to their closest vocabulary word. Then, we
extract the histogram of visual words for each sub-region, r, in the descriptor frame and
compute the localization scores using the localizer weights.

forward neural network where the second layer is a C-way softmax classifier. Picking the
class corresponding to the highest probability gives us our final classification. In the follow-
ing sections, we first explain our video representation and then provide a detailed explanation
of our model.

3.1 Video Representation

Video data is represented using local feature descriptors computed at densely sampled in-
terest points. We use two different feature descriptors in our experiments, namely STIP
(HOG-HOF) and MBH features. The STIP features are computed densely using Laptev’s
STIP detector [18] with default settings where the interest points are sampled at eight spa-
tial and two temporal scales. The MBHx and MBHy feature descriptors, which represent
the gradient of the horizontal and vertical components of optical flow, are computed along
the densely sampled SIFT trajectories as explained in [36] and they are concatenated into a
single MBH feature.

We construct separate codebooks for STIP and MBH descriptors by clustering a subset
of 100,000 randomly selected training features using k-means. We set the number of visual
words in each codebook to 4,000. Finally, each feature point is represented by it’s space-time
location and index of the visual word in the codebook that is closest in feature space. Finally,
each feature point p j is represented as the tuple (x j,y j, t j,c j), denoting that it was observed
at (x j,y j) in frame t j of the video; the label c j corresponds to the index of the visual word in
the codebook that is closest in feature space to p j’s descriptor.

Dense sampling extracts interest points at regular space-time locations, making it possi-
ble to compact the images and significantly reduce the amount of computation necessary to
localize discriminative sub-regions. A single 2D image can represent the quantized features
for a given range of actual video frames as shown in Figure 2. For brevity, we will use the
term “frame" to denote this descriptor image.
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3.2 Localizing Discriminative Sub-Regions
As shown in Figure 1, the first step in recognizing the action is localizing discriminative
sub-regions that best describe the action. These candidates are selected using a set of D
discriminative sub-region localizers. A localizer φd , learned during training (as explained
in Section 4), is a vector of parameters describing the probability distribution of a latent
location variable. Even though localizers are not associated with any action class explicitly,
using multiple localizers allows the model to select different regions in each frame to capture
variations in classes. For every sub-region in each frame of the video, localizers compute
the probability of that sub-region being the most discriminative in that frame as shown in
Figure 2.

Formally, this is implemented with a distribution that is similar to the softmax activation
function. If R f denotes the set of all possible sub-regions in frame f , then the probability
that the sub-region r is the most discriminative region for localizer d, p f (r;φd) is defined as:

p f (r;φd) =
exp
(
φ>d h f ,r

)
∑

r′∈R f

exp
(

φ
>
d h f ,r′

) (1)

where h f ,r denotes the histogram describing the frequency of visual words in the sub-region
r contained in frame f . A significant advantage of this linear scoring function is that it can
be computed efficiently using the integral image representation, similar to [32].

3.3 Estimating Histograms to Represent Localized Sub-Regions
Once the sub-region probabilities of each frame are computed, our objective is to compute a
video level bag-of-words (BOW) representation for each localizer. The straightforward way
is to select the sub-region in each video frame that maximizes the probability in Equation (1)
and accumulate the histograms of regions across frames, i.e. hd =∑ f∈F h f ,rmax , where rmax =

argmaxr p f (r;φd). However, since the max operator is not differentiable, we use the sub-
region probabilities to compute the estimated histograms using a softmax approximation so
that the localizer gradients can be computed during learning. The final feature representation
for localizer d ∈D, denoted xd , is obtained by using this expectation calculation to aggregate
over all frames:

xd(φd) = ∑
f∈F

∑
r∈R f

h f ,r p f (r;φd), (2)

where F is the number of frames for the given video sequence, R f is again the set of all
possible sub-regions within a frame, h f ,r represents the histogram of features for sub-region
r in f and p f (r,φd) is computed as in Equation (1). In order to incorporate nonlinearity into
our model, we employ the Kernel Map technique proposed by Vedaldi and Zisserman [31]
that maps histograms to high-dimensional features where linear dot product approximates
HIK (as illustrated in Figure 1).

3.4 Action Classification
After computing the histograms, we use them to estimate the probability of action labels
for each video. The key problem is that the system must aggregate the information in D
different localizers to produce this final probability. This aggregation is implemented using
a two-layer feed forward neural network where the last layer is a C-way softmax classifier
for action classification, as shown in Figure 3.
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Figure 3: Two-layer neural network for final classification where B is number of input nodes,
M is number of hidden units and C is the number of action classes.

The network outputs are computed as follows:

yk(x̂,w) =
ebk

∑k′ ebk′
(3)

bk =
M

∑
j=1

w(2)
k j h

(
B

∑
i=1

w(1)
ji x̂i +w(1)

j0

)
+w(2)

k0 (4)

where M is number of hidden units, B is number of input nodes, h is the logistic activation
function, x̂ are the kernel map outputs, and w are the network weights. The network output
with the highest score is selected as the predicted action class.

4 Learning
For a set of training videos {Vn} and corresponding set of ground truth labels {ln}, where
n = 1, . . . ,N, our goal is to maximize the probability of ground truth label for each video by
simultaneously optimizing both the localization parameters Φ = {φd} and the classification
parameters w. Converting the criterion to a loss by taking the negative logarithm of the
likelihood and adding regularization terms, we get:

E(Φ,w) =−
N

∑
n=1

C

∑
k=1

1k(ln) logyk(x̂n(Φ),w)+
1
2

ε1||Φ||2 +
1
2

ε2||w||2 (5)

where 1k(ln) is a class indicator function and yk is given by 3. We trained our network using
stochastic gradient descent with a batch size of 100 examples and momentum (µ) of 0.5. We
set the number of hidden units, M, to 500. Localization and network weights are initialized
randomly during training. We used dropout technique introduced by Hinton et al. [7] to
reduce the over-fitting on the training data. We experimented different sub-region sizes and
found that setting sub-region to be 1/4 the size of the frame provided the best accuracy. We
also experimented using different number of localizers: D = 10 provided best results of UCF
Sports and D = 2 provided best results for HMDB and UCF101.
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5 Experimental Evaluation
In this section, we first show the effectiveness of our proposed model at localizing discrim-
inative regions on UCF Sports dataset which is the most consistently used dataset in recent
work on localization [17, 27, 30] because ground-truth localizations are available at each
frame. Then, we present the action recognition results of our method on two major action
recognition datasets: HMDB and UCF101.

We compare our results with the baseline global BOW model and state of the art methods
which use STIP and MBH features. For the baseline BOW model, we compute the global
histograms of visual words and transform the histograms using Kernel Map to approximate
the Histogram Intersection Kernel (HIK). Then, we train multi-class linear SVM using the
transformed features.

5.1 UCF Sports Dataset
The UCF Sports dataset contains 150 video sequences and includes 10 human actions. It is
a challenging dataset due to large variations in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background and illumination conditions.

5.1.1 Accuracy Results

While it is common to use a Leave-One-Out-Cross-Validation (LOOCV) testing methodol-
ogy when conducting experiments with the UCF Sports dataset, Lan et al. [17] have recently
pointed out that many of the videos in this dataset are clips taken from a longer video. This
is problematic when conducting LOOCV tests because several training clips will often be
drawn from the same video as the testing clip. In order to overcome this issue, [17] sug-
gest using approximately a third of the videos from each action class for testing while the
remaining videos are reserved for training.

Method Accuracy(%)
Lan et al.[17] 73.1*

Shapovalova et al.[30] 75.3
Raptis et al.[27] 79.4*

Global BOW 70.21
Our Method 80.95

Table 1: Mean per-class action recognition accuracies (split) on the UCF Sports dataset using
STIP features. * Both [17] and [27] use ground truth annotations during training where as
our model is weakly supervised and does not require ground truth annotations.

Table 1 shows results using the train-test split1 suggested in [17] using STIP features. As
shown in the table, our localization based-system is able to improve the classification accu-
racy of the baseline global bag-of-words system by more than 10%. Compared with recent
action recognition systems, Table 1 also shows two important aspects of the performance
of this system: 1) The 80.95% recognition accuracy of our system is more than 5% better
than the accuracy of the recently proposed weakly-supervised system in [30], with the added
advantage of not requiring any object saliency detector for limiting candidate sub-regions.
This is, in part, due to the ability of our system to learn localizers that are trained to find

1Available at http://www.sfu.ca/~tla58/other/train_test_split
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discriminative regions. 2) Our system is competitive with recently proposed methods that
require hand-annotated regions in the training data [17, 27], significantly improving on [17].

5.1.2 Localization Results

Because our method is trained using weakly-supervised data, this method is limited to learn-
ing to isolate discriminative sub-regions in the video. However, the results in this section will
show that this approach is able to actually locate the action with accuracy that is comparable
to previous work that was trained with hand-annotated bounding boxes.

For action locations, we pick the sub-region with the highest probability in each video
frame using Equation (1). In order to evaluate how well our discriminative sub-regions
are localizing actions, we use the same evaluation criterion given in [17] and compute the
ROC curves for each action class. A video is considered as correctly predicted if both the
prediction label and the localization match the ground truth.

Figure 4 shows our average ROC curve for action classes and the ROC curve from [17]
for σ = 0.2. We use σ = 0.2 for comparison since [17] provides ROC curve only for σ = 0.2.
We also compute the area under the ROC curve (AUC) for different σ values. Although our
system has no access to ground-truth bounding boxes during training, while the system in
[17] does, our system performs comparably with [17] and in many cases outperforms it.

Figure 5 shows localization results obtained using our proposed technique that provide
empirical evidence that it localizes the actual action well, despite only being trained to locate
discriminative sub-regions. This indicates that the sub-regions containing the actual action
tend to be the most discriminative sub-regions.
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Figure 4: Comparison of action localization performance against Lan et al. [17]. (a) ROC
curves for σ = 0.2. (b) Area Under ROC for different σ . σ is the threshold that determines
if a video is correctly localized. Compared with [17], which requires the action be manually
located in the training data, our system produces comparable or improved results.

5.2 HMDB Dataset
We ran experiments on the HMDB dataset [16] to demonstrate the action classification per-
formance of our method on larger action recognition datasets. The HMDB dataset consists
of 51 action categories and 6849 video clips.
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Figure 5: We show localization results obtained using our method on the UCF Sports action
dataset. We can see that our model is able to correctly localize action specific sub-regions as
the best possible representation of the action being conducted in the video.

In our experiments, we follow the original approach using three train-test splits [16] and
report the average accuracy. For each class and split, there are 70 videos for training and 30
videos for testing. Note that the dataset includes both the original videos and their stabilized
version. In our experiments we use the original videos.

Table 2 provides a comparison of our method with the global BOW method and other
methods that use STIP features only. The classification accuracy of our method is 8.56%
better than the global BOW and 2.66% better than the Action Bank method [28]. Table 3
compares our method with the state-of-the-art on HMDB using MBH features. Our accuracy
results are comparable to or better than the baseline dense trajectories method [36] and the
recent work published in [10].

Many of the advances in recent work using the HMDB dataset can be incorporated into
our system. Wang and Schmid [33] improve the performance of the dense trajectories by
finding a homography between frames and estimating the camera motion. Removing the
trajectories consistent with the camera motion improves the motion-based descriptors, such
as HOF and MBH. Similarly, Jain et al. [10] decompose the visual motion into dominant and
residual motions in order to compensate the camera motion. Improved low-level features
from systems like [10, 33] can be incorporated into the initial stages of our system. Research
has also shown that using Fisher Vector (FV) and VLAD encodings significantly improves
the performances over the BOW encoding [10, 33].

Method Accuracy(%)
HOG/HOF [16] 20.0

Global BOW [STIP] 21.0
C2 [16] 23.0

Action Bank [28] 26.9
Our method [STIP] 29.56

Table 2: Comparison of our method with global BOW and other methods that use STIP
(HOG/HOF) features only.

5.3 UCF101 Dataset
We also show results on the UCF101 [13] dataset which consists of 13320 videos from
101 action categories. In our experiments, we have used the predefined splits by authors
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Method MBH Combined *
TrajMF [11] 34.0% 40.7%
Global BOW 36.6% 38.74%

w-Flow with BOW [10] 40.6% −
w-Flow with VLAD ** [10] 43.3% 52.1%

Dense Trajectory [36] 43.2% 46.6%
Our method with BOW 45.29% 47.24%

Improved Dense Trajectory with BOW [33] − 52.2%
Improved Dense Trajectory with FV ** [33] 52.1% 57.2%

Table 3: Comparison of our method with the state-of-the-art on HMDB dataset. *We use
HOG, HOF and MBH features for combined results while others use additional trajectory
features. ** [10, 33] use VLAD and FV encoding, respectively, for their best results.

for training-testing and report the average accuracy. Table 4 shows accuracy results of our
method when compared to global BOW and related work on UCF101 dataset. Our result
is directly comparable to [13] and is 10% better than [13] using the STIP features. Also,
a slight modification of our system using Fisher Vector encoding raises performance to al-
most 83% on UCF101. This is within 3% of the best-performing system in the THUMOS
competition 2.

Method Accuracy(%)
Soomro et al. [13] 43.90

Karpathy et al. [12] [CNN] 65.40
Global BOW [STIP] 43.94
Global BOW [MBH] 65.28
Our method [STIP] 53.35
Our method [MBH] 74.24

Our method [STIP + MBH] 78.77
Our method with FV [STIP + MBH] 82.83

Table 4: Comparison of our method with global BOW and related work on UCF101 dataset.

6 Conclusion
In this paper, we have presented a system that can learn to localize discriminative sub-regions
in videos from weakly-supervised data where videos only have high-level tags. Our experi-
ments on UCF Sports data set indicate that this approach is able to localize the actions with
comparable accuracy to systems that must be trained from manually annotated data. We
have also demonstrated that localizing discriminative sub-regions improves the recognition
accuracies significantly over the baseline global BOW model on two major datasets: HMDB
and UCF101.

Acknowledgments
This work was supported in part by the National Science Foundation under grants IIS-
1212948 and IIS-091686.

2http://crcv.ucf.edu/ICCV13-Action-Workshop/

Citation
Citation
{Jiang, Dai, Xue, Liu, and Ngo} 2012

Citation
Citation
{Jain, Jegou, and Bouthemy} 2013{}

Citation
Citation
{Jain, Jegou, and Bouthemy} 2013{}

Citation
Citation
{Wang, Kl{ä}ser, Schmid, and Liu} 2013

Citation
Citation
{Wang and Schmid} 2013

Citation
Citation
{Wang and Schmid} 2013

Citation
Citation
{Jain, Jegou, and Bouthemy} 2013{}

Citation
Citation
{Wang and Schmid} 2013

Citation
Citation
{Khurramprotect unhbox voidb@x penalty @M  {}Soomro and Shah} 2012

Citation
Citation
{Khurramprotect unhbox voidb@x penalty @M  {}Soomro and Shah} 2012

Citation
Citation
{Khurramprotect unhbox voidb@x penalty @M  {}Soomro and Shah} 2012

Citation
Citation
{Karpathy, Toderici, Shetty, Leung, Sukthankar, and Fei-Fei} 2014



BOYRAZ ET AL. : WEAKLY-SUPERVISED ACTION RECOGNITION BY LOCALIZATION 11

References
[1] Mohamed R. Amer and Sinisa Todorovic. A chains model for localizing participants

of group activities in videos. In Computer Vision (ICCV), 2011 IEEE International
Conference on, 2011.

[2] Lamberto Ballan, Marco Bertini, Alberto Del Bimbo, Lorenzo Seidenari, and Giuseppe
Serra. Effective codebooks for human action categorization. In ICCV workshop on
Video-oriented Object and Event Classification (VOEC), 2009.

[3] Hakan Boyraz, Marshall Friend Tappen, and Rahul Sukthankar. Localizing actions
through sequential 2d video projections. In Fourth IEEE Workshop on CVPR for Hu-
man Communicative Behavior Analysis (CVPR4HB), 2011.

[4] Liangliang Cao, Zicheng Liu, and Thomas S. Huang. Cross-dataset action detection. In
Proceedings of Computer Vision and Pattern Recognition (CVPR), pages 1998–2005,
2010.

[5] Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recog-
nition via sparse spatio-temporal features. In VS-PETS, 2005.

[6] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively
trained, multiscale, deformable parts model. In Proceedings of Computer Vision and
Pattern Recognition (CVPR), 2008.

[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. CoRR, abs/1207.0580, 2012.

[8] Nazli Ikizler-Cinbis and Stan Sclaroff. Object, scene and actions: combining multiple
features for human action recognition. In European Conference on Computer Vision
(ECCV), 2010.

[9] Arpit Jain, Abhinav Gupta, Mikel Rodriguez, and Larry S. Davis. Representing videos
using mid-level discriminative patches. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, June 2013.

[10] M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recog-
nition. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference
on, pages 2555–2562, June 2013.

[11] Yu-Gang Jiang, Qi Dai, Xiangyang Xue, Wei Liu, and Chong-Wah Ngo. Trajectory-
based modeling of human actions with motion reference points. In Proceedings of
the 12th European Conference on Computer Vision - Volume Part V, ECCV’12, pages
425–438, 2012. ISBN 978-3-642-33714-7.

[12] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In
Proceedings of Computer Vision and Pattern Recognition (CVPR), 2014.

[13] Amir Roshan Zamir Khurram Soomro and Mubarak Shah. Ucf101: A dataset of 101
human action classes from videos in the wild. In CRCV-TR-12-01, 2012.



12 BOYRAZ ET AL. : WEAKLY-SUPERVISED ACTION RECOGNITION BY LOCALIZATION

[14] Alexander Klaser. Learning human actions in videos. In PhD thesis, Universit de
Grenoble, 2010.

[15] Adriana Kovashka and Kristen Grauman. Learning a hierarchy of discriminative space-
time neighborhood features for human action recognition. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2046–2053, June 2010.

[16] H Kuehne, H Jhuang, E Garrote, T Poggio, and T Serre. Hmdb: a large video database
for human motion recognition. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2556–2563. IEEE, 2011.

[17] Tian Lan, Yang Wang, and Greg Mori. Discriminative figure-centric models for joint
action localization and recognition. In Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, 2011.

[18] Ivan Laptev. On space-time interest points. In IJCV, 2005.

[19] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. Learning
realistic human actions from movies. In Proceedings of Computer Vision and Pattern
Recognition (CVPR), 2008.

[20] Jingen Liu and Mubarak Shah. Learning human actions via information maximization.
In Proceedings of Computer Vision and Pattern Recognition (CVPR), 2008.

[21] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos
"in the wild". In Proceedings of Computer Vision and Pattern Recognition (CVPR),
2009.

[22] Jingen Liu, Yang Yang, and Mubarak Shah. Learning semantic visual vocabularies
using diffusion distance. In Proceedings of Computer Vision and Pattern Recognition
(CVPR), 2009.

[23] Wei-Lwun Lu, Kenji Okuma, and James Jim Little. Tracking and recognizing actions
of multiple hockey players using the boosted particle filter. In IVC, 2009.

[24] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In Proceed-
ings of Computer Vision and Pattern Recognition (CVPR), 2009.

[25] Syed Zain Masood, Adarsh Nagaraja, Nazar Khan, Jiejie Zhu, and Marshall Friend
Tappen. Correcting cuboid corruption for action recognition in complex environment.
In ICCV workshop on Video Event Categorization, Tagging and Retrieval for real-
world applications (VECTaR), 2011.

[26] Ronald Poppe. A survey on vision-based human action recognition. In IVC, 2010.

[27] Michalis Raptis, Iasonas Kokkinos, and Stefano Soatto. Discovering discriminative
action parts from mid-level video representations. In Proceedings of Computer Vision
and Pattern Recognition (CVPR), pages 1242–1249, 2012.

[28] Sreemanananth Sadanand and Jason J Corso. Action bank: A high-level representation
of activity in video. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 1234–1241. IEEE, 2012.

[29] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a
local svm approach. In ICPR, 2004.



BOYRAZ ET AL. : WEAKLY-SUPERVISED ACTION RECOGNITION BY LOCALIZATION 13

[30] Nataliya Shapovalova, Arash Vahdat, Kevin Cannons, Tian Lan, and Greg Mori. Sim-
ilarity constrained latent support vector machine: An application to weakly supervised
action classification. In European Conference on Computer Vision (ECCV), 2012.

[31] A. Vedaldi and A. Zisserman. Sparse kernel approximations for efficient classification
and detection. In Proceedings of Computer Vision and Pattern Recognition (CVPR),
2012.

[32] Andrea Vedaldi, Varun Gulshan, Manik Varma, and Andrew Zisserman. Multiple ker-
nels for object detection. In Computer Vision, 2009 IEEE 12th International Confer-
ence on, pages 606–613. IEEE, 2009.

[33] Heng Wang and C. Schmid. Action recognition with improved trajectories. In Com-
puter Vision (ICCV), 2013 IEEE International Conference on, pages 3551–3558, Dec
2013.

[34] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, and Cordelia
Schmid. Evaluation of local spatio-temporal features for action recognition. In Pro-
ceedings of the British Machine Vision Conference (BMVC), 2009.

[35] Heng Wang, Alexander Klaser, Cordelia Schmid, and Cheng-Lin Liu. Action recogni-
tion by dense trajectories. In Proceedings of Computer Vision and Pattern Recognition
(CVPR), 2011.

[36] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense trajecto-
ries and motion boundary descriptors for action recognition. International Journal of
Computer Vision, 2013.

[37] Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision based methods
for action representation, segmentation and recognition. In CVIU, 2011.

[38] Angela Yao, Juergen Gall, and Luc Van Gool. A hough transform-based voting frame-
work for action recognition. In Proceedings of Computer Vision and Pattern Recogni-
tion (CVPR), 2010.

[39] Junsong Yuan, Zicheng Liu, and Ying Wu. Discriminative subvolume search for ef-
ficient action detection. In Proceedings of Computer Vision and Pattern Recognition
(CVPR), 2009.


